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Department of Mathematics and Computation, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
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a b s t r a c t

To prevent possible frauds and give more protection to companies and consumers it is necessary to
control that the types of milk used in the elaboration of dairy products correspond to those appearing
in their label. Therefore, it is greatly interesting to have efficient, quick and cheap methods of analysis
to identify them. In the present work, the multivariate data are the protein chromatographic profiles
of cheese and milk extracts, obtained by high-performance liquid chromatography with diode-array
detection (HPLC-DAD). These data correspond to pure samples of bovine, ovine and caprine milk, and
eywords:
airy products
uthenticity
PLC-DAD
artial least squares (PLS)
rincipal components analysis (PCA)

also to binary and ternary mixtures. The structure of the data is studied through principal component
analysis (PCA), whereas the percentage of each kind of milk has been determined by a partial least squares
(PLS) calibration model. In cheese elaborated with mixtures of milk, the procedure employed allows one
to detect 3.92, 2.81 and 1.47% of ovine, caprine and bovine milk, respectively, when the probability of
false non-compliance is fixed at 0.05. These percentages reach 7.72, 5.52 and 2.89%, respectively, when
both the probability of false non-compliance and false compliance are fixed at 0.05.
alse non-compliance or false compliance
isks

. Introduction

Dairy products have been traded for many years and they repre-
ent a large proportion of the food industry. For legal, medical and
thical reasons, cheeses should be correctly labeled, and the substi-
ution or omission of valuable compounds in milk products for less
ostly ingredients, the addition of ingredients to make products
ppear to be better, and the false or misleading labeling of dairy
roducts is considered fraudulent. In many European countries,

t is mandatory to state the type of milk used for manufacturing
heese or other dairy products [1] especially in the case of protected
enomination of origin (PDO) cheeses [2]. However, differences in
rice and seasonal availability might make it attractive for farm-
rs to adulterate expensive ewe and goat milk with cheaper cow
ilk. Protection against such frauds is of importance to warrant

airness in food trade, and also to protect consumers. Thus, there

s an ultimate need of rapid, efficient, sensitive, and reliable con-
rol methods that can determine the composition of milk in cheese
nd other dairy products. The analytical techniques used for this
ask can be divided in two different groups: the ones based on the

∗ Corresponding author. Fax: +34 947258831.
E-mail address: mcortiz@ubu.es (M.C. Ortiz).

039-9140/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2009.11.067
© 2009 Elsevier B.V. All rights reserved.

detection of different types of milk proteins and the ones focused
on DNA analysis or genetic techniques [3]. Isoelectric focusing (IEF)
of �-casein [4] is the present European Union reference method for
cow milk detection.

To carry out the analysis of dairy products, the most employed
electrophoretic techniques are cationic polyacrylamide gel elec-
trophoresis (PAGE) [5], capillary isoelectric focusing combined
to mass spectrometry [6] and capillary electrophoresis–mass
spectrometry [7]. Among the chromatographic techniques, high-
performance liquid chromatography with reverse phase columns
(RP-HPLC) is employed in the detection and quantification of
bovine, ovine and caprine milk percentages in Portuguese protected
denomination cheeses [8]. Also, several references about the anal-
ysis of caseins [9–11] or �-lactoglobulins [12] in milk and cheeses
by means of HPLC can be found. In order to take profit of the advan-
tages of both electrophoretic and chromatographic techniques,
sometimes they are combined [13–15]. Further, immunological
essays are a widely used tool to identify the kind of milk used
in milk mixtures and cheeses, especially immunoenzimatic tech-

niques like ELISA [16–18]. On the other hand, Haasnoot et al. [19]
use a fast biosensor immunoassay to detect cow milk in milk of ewe
and goat, whereas Haasnoot and Du Pré [20] employed luminex-
based triplex immunoassay for the simultaneous detection of soy,
pea, and soluble wheat proteins in milk powder. Chromatographic
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Table 2
Composition of cows feeding from which milk has been taken for milk analysis or
for preparation of cheeses analysed.

Bovine

Milk Cheese

Forage (60%)
Grass silo (%) – 77
Sorghum silo (%) 65 –
Alfalfa hay (%) 17.5 11.5
Vetch-oats hay (%) 17.5 11.5

Feed (40%)
Barley (%) 22 24
Maize (%) 40 38.8
Oats (%) 4.4 8
Soy (%) 15 16
Bran (%) 13.2 8

T
C

56 N. Rodríguez et al. / T

nd immunological techniques are also sometimes combined [21]
gain in the detection of cow milk in ewe milk cheeses. The latest
dvances made on molecular biology techniques have promoted
he fast development of several genetic techniques successfully
pplied in the identification of animal species in food. Despite their
igher cost and the need of more training than for those techniques
ased on the analysis of proteins, they offer significant advantages
22]. Especially interesting are their use with products exposed to
trong thermical treatments due to the high stability of DNA in
hese procedures. Polymerase chain reaction (PCR) has become a
ery useful tool in the quality control of food industry. For exam-
le, PCR is used in [23–25] for detecting cow milk in different kinds
f cheese, and López-Calleja et al. [26,27] use it to detect the pres-
nce of caprine milk. Other examples based on the DNA analysis
an be found in [28,29]. The combination of electrophoretic, chro-
atographic and PCR techniques is used in [30] to identify the kind

f milk used in the elaboration of cheese. In addition, several works
escribe the analysis of milk and dairy products by means of near

nfrared (NIR) spectroscopy [31,32].
Chemometric techniques for analytical data play a fundamen-

al role in the characterization of foods and in the detection of
dulteration. In particular, the chemometric analysis of digital-
zed profiles (chromatograms and electrophoretograms) allows
ne the characterization of foods without need of identifying all
he detected compounds. This approach is used for the character-
zation of cheese or milk extracts with electrophoretic [33–35] or
hromatographic techniques [36]. Buchgraber et al. [37] determine
ocoa butter in milk chocolate by means of triacylglycerol profil-
ng. The protein content in milk powder is also studied through
nfrared spectra, using least squares support vector machine (LS-
VM) in [38], and comparing the results to the ones obtained by
eans of PLS. A review of analytical methods coupled with chemo-
etric tools for the determination of the quality and authentication

f dairy products was published in 2007 [39]. Among the references
here multivariate methods are employed [33–39], techniques

uch as cluster analysis, soft independent modeling of class-analogy
SIMCA), principal component analysis (PCA) or linear discriminant
nalysis (LDA) are found for qualitative studies. If the determina-
ion is carried out from a quantitative point of view, the employed
egression models include LS-SVM, principal component regres-
ion (PCReg) and PLS. In the rest of references cited at the beginning
f the introduction [5–29], quantification is always carried out by
eans of univariate regression models.
In the present work, PCA is used for the analysis of protein chro-

atographic profiles, obtained by means of HPLC-DAD, of mixtures
f milk and different cheese samples, and then quantification (per-
entages of each kind of milk) is made by means of PLS. In order to
valuate the performance of the procedure to detect a specific kind
f milk, the probability, �, of false non-compliance (saying that this
ind of milk has been used in the sample when it is not) and also the

robability, �, of false compliance (saying that the kind of milk is
ot in the sample when it is false) have been both fixed to 0.05. After
hat, the decision limit, CC�, and the capability of detection, CC�,
ave been obtained. CC� is the percentage at and above which it
an be concluded with an error probability of false non-compliance,

able 1
omposition of ovine, bovine and caprine milk used in milk samples studied and in the p

Ovine

Milk Cheese

Fat (%) 5.80 6.81
Protein (%) 4.92 5.35
Sec extract (%) 16.61 18.00
Somatic cellules (×1000/mL) 679 1029
Bacteria 50 ◦C (×1000/mL) 103 146
Corrector (%) 1.8 2
Bicarbonate (%) 1.4 1.6
Palm soap (%) 1.8 1.6
Salt (%) 0.4 0

�, that a sample has a specific kind of milk (in a milk mixture or in
cheese). CC� is the smallest percentage of the milk that may be
quantified in a sample with a false compliance probability equal to
� and a false non-compliance probability equal to �. The procedure
to calculate these figures of merit can be consulted in [40] and [41]
for univariate and multivariate cases, respectively. Neither in any of
the works previously cited, nor in revision [39] the probabilities of
false compliance and false non-compliance have been evaluated in
the detection of the kind of milk used in a mixture or in the prepara-
tion of cheeses, independently of using univariate or multivariate
techniques. The authentication of dairy products is an important
issue for food processors and consumers, so minimizing risks of
false compliance and false non-compliance in misleading labeling
is relevant to evaluate the performance of a proposed procedure.

2. Experimental

2.1. Samples and chemicals

On one hand, bovine and ovine raw milk was directly obtained
from producers in “Centro de Formación Agraria de Viñalta, Junta de
Castilla y León” from Palencia (Spain) in two different days, there-
fore slight differences in their composition could be found. Cows
belong to “frisona” breed and are between 2 and 9 years old whereas
ewes are from “churra” breed and are between 2 and 8 years old,
respectively. Caprine raw milk always came from Ávila (Spain) and
belonged to “murciano-granadina” goats. Table 1 describes % fat,
% protein, % sec extract, somatic cellules and bacteria per mL for
these three kinds of milk and Tables 2 and 3 contain details about
animals feeding (cows and ewes, respectively).
Cheese samples analysed were prepared in the “Estación Tec-
nológica de la Leche” from Palencia (Spain). They were “fresh
cheeses” elaborated with milk from “churras” ewes, “frisonas” cows
and “murciano-granadina” goats. Their percentage of fat, protein
and sec extract can also be seen in Table 1 meanwhile Tables 2 and 3

reparation of the analysed cheeses.

Bovine Caprine

Milk Cheese Milk

3.57 3.84 4.65
3.14 3.25 3.36
8.59 8.83 13.37

374 187 –
14 13 –
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Table 3
Composition of ewes feeding from which milk has been taken for milk analysis or
for preparation of cheeses analysed.

Ovine

Milk Cheese

Feed
Barley (%) 91.6 28.6
Oats (%) – 28.5
Soy (%) 4 40
Corrector? (%) 3 3
Bicarbonate 1 –
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Table 5
Percentage of each kind of milk contained in the 12 cheeses analysed.

Sample number Ovine (%) Bovine (%) Caprine (%)

First replicate Second replicate

1 13 – 100 –
2 14 100 – –
3 15 – – 100
4 16 98 2 –
5 17 95 5 –
6a 18a 98 2 –
7 19 98 – 2
8 20 95 – 5
9a 21a 98 – 2

10 22 – 2 98
11 23 – 5 95
Salt 0.4 –

Hay sainfoin (kg/animal) 1.25 1.15
Straw At discretion At discretion

ontain animals feeding (cows and ewes) in the different periods
f year where milk was taken to be analysed or to prepare cheeses.
heeses were prepared at low pasteurization (63 ◦C and 30 min)
nd a ripening time of 3 days. Furthermore, they were vacuum
acked in portions and frozen at a temperature between −10 and
20 ◦C.

In this work, a total of 31 milk samples are prepared and mea-
ured in three different times (two consecutive days and 1 month
arlier): the first 10 samples are measured the first day, the next 7
he second one and the last 14 for the third day (see Table 4). The
ercentages of each kind of milk in the mixtures are also described

n Table 4: six pure milk samples, nine ovine and bovine mixtures,
ix ovine and caprine mixtures, six caprine and ovine mixtures and
our ternary mixtures.

Twelve cheeses, whose composition is shown in Table 5, are pro-
ided. Samples to be analysed are prepared in duplicate and the 24
nal samples are also measured in three different days: the first six
amples from the first replicate for the first day, the last six samples
rom the first replicate for the second day and the 12 samples from
he second replicate for the third day. It must be highlighted that
etween the 12 cheeses, there are three which have been elabo-

ated with raw milk whereas the other eight contain pasteurized
ilk.
Trichloroacetic acid (TCA) employed in proteins precipitation

as purchased from Fluka (Steinheim, Germany) and the working

able 4
ercentage of each kind of milk contained in the 31 milk mixtures and day of the
nalysis.

Sample number
Day

Ovine (%) Bovine (%) Caprine (%)

1 2 3

1 – 18 100 – –
2 – 19 – 100 –
3 – 21 85 15 –
4 – 22 90 10 –
5 – 23 95 5 –
6 – – 80 20 –
7 – – 70 30 –
8 – – 60 40 –
9 – 20 – – 100

10 – 24 85 – 15
– 11 25 90 – 10
– 12 27 – 15 85
– 13 28 – 10 90
– 14 30 80 10 10
– 15 – 70 15 15
– 16 – 80 – 20
– 17 – – 20 80
– – 26 95 – 5
– – 29 – 5 95
– – 31 90 5 5
12a 24a – 2 98

a Cheese samples which contain raw instead of pasteurized milk.

solution was prepared at 24% (w/v). Deionised water was obtained
from a Milli-Q water purification system (Millipore).

Acetonitrile (ACN) and trifluoroacetic acid (TFA) used in the
preparation of the gradient elution in chromatographic analyses
were, respectively, obtained from Scharlau and Panreac (Barcelona,
Spain). All reagents used in this work were of analytical grade for
HPLC. To minimize the loss of peptides all the material used is made
of glass.

2.2. Preparation of samples for HPLC analysis

Whey protein fractions are obtained from 15 mL of milk or 5 g
of cheese to which 15 mL of water have been added before leav-
ing them for 30 min in a sonicator. Proteins are precipitated by the
addition of TCA (24%, w/v) until pH 4.6. As a consequence, caseins
are eliminated and only soluble proteins (whey proteins) remain.
So, the profile studied consists of four groups of proteins: albumines
(�-lactoglobulin, �-lactoalbumin and serum albumine), globulins
(immunoglobulin: IgG, IgA and IgM), proteoso-peptones and others
(lactoferrin).

After heating samples in a water bath at 40 ◦C for 5 min, they
are centrifuged at 4300 rpm and 26 ◦C for 10 min. Once the result-
ing supernatant is filtered, a new centrifugation step is carried out
with less sample volume and higher intensity (9000 rpm, 26 ◦C and
10 min). Finally, in order not to damage the chromatographic col-
umn, samples are passed through 0.45 �m acetate filters before
HPLC analyses.

2.3. Instrumentation and conditions in the HPLC analysis

In order to get the whey a Heraeus Megafuge 1.0 R centrifuge
(Thermo Scientific, Milan, Italy) is used.

Chromatographic analyses are carried out at room temperature
in a liquid chromatograph from Agilent Technologies including a
G1379A vacuum degasser, a G1310A pump, a G1313A injector and a
G1315B diode-array detector. Twenty-five microliters are injected
into the system and gradient elution is carried out with a mixture of
two solvents. Solvent A consisted of 0.1% TFA in water and solvent B
consisted of 0.1% TFA in 80% aqueous ACN (v/v). Proteins are eluted
with a series of linear gradients increasing the proportion of solvent
B, from 36 to 56% in 20 min, from 56 to 60% in 10 min and from 60

to 36% in the last 5 min.

Chromatographic compounds separation is achieved with a
reversed-phase column Bio-Rad High Pore RP-318 with dimensions
250 mm × 4.6 mm. The flow rate is 1.0 mL min−1 with column tem-
perature equal to 45 ◦C and the detection is made at a wavelength
of 210 nm according to method employed in Ref. [8].
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Table 6
Retention times corresponding to the nine selected peaks and their presence in the
pure milk samples chromatogram.

Peak number Retention time (min) Milk

1 14.9 Caprine
2 15.1 Ovine
3 15.4 Caprine/ovine
4 17.8 Ovine
5 18.3 Ovine
58 N. Rodríguez et al. / T

.4. Software

Chromatographic data acquisition is performed with the aid
f Chemstation software from Agilent incorporated in the HPLC
quipment. The PLS Toolbox [42] for MATLAB is employed to
arry out the PCA and build the calibration models based on PLS.
TATGRAPHICS [43] is employed to statistically validate the linear
egression models, and a home-made program NWAYDET is used
o obtain CC� and CC� values [40,41].

. Results and discussion

.1. Chromatographic signals

.1.1. Milk samples
Once chromatograms from the 31 milk samples described in

ection 2.1 are recorded, the chromatographic profile is consti-
uted by the nine peaks selected in this work. Their retention times
re shown in Table 6. It is checked that there are two specific
eaks for bovine milk, another two for caprine milk and three for
vine milk. It must be highlighted that the other two peaks are
hared between ovine and caprine milk (peak numbers 3 and 7
rom Table 6). Chromatograms for pure milk samples (ovine, bovine

nd caprine) can be seen in Fig. 1 whereas Fig. 2a shows a ternary
ixture chromatogram (80% ovine, 10% bovine and 10% caprine
ilk, respectively). The standardized profile has been obtained

y transforming into percentages the areas of the nine selected
eaks.

Fig. 1. Chromatograms obtained for pure milk sam
6 19.2 Caprine
7 19.6 Caprine/ovine
8 20.1 Bovine
9 20.8 Bovine

3.1.2. Cheese samples
Chromatographic profile for cheese samples is made up of the

sixteen peaks whose retention times are shown in Table 7. It is
checked that there are four specific peaks for ovine, four for caprine
and one for bovine milk, respectively. In addition, another specific
peak, at retention time of 8.5 min, is related to raw milk (sam-
ples 6, 9, 12, 18, 21 and 24 in Table 5). Fig. 2b and c shows the
chromatograms of two cheese samples prepared with caprine milk
mixed with 5% bovine milk (Fig. 2b) and 2% bovine milk (Fig. 2c).
3.2. Principal components analysis (PCA)

With the aim of making an exploratory data analysis in a qual-
itative way, PCA is carried out both for milk and cheese samples
sets separately. In order to have a first structure of data as clear as

ples: (a) ovine, (b) bovine and (c) caprine.
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ig. 2. (a) Chromatograms of a milk mixture with 80, 10 and 10% ovine, bovine and
nd 5% bovine milk. (c) Chromatograms of a cheese sample made with 98% caprine

ossible, only samples measured on the same day are chosen: 14

ilk samples and 12 cheese samples, arranged in two matrices X

nd Y with dimensions (14 × 9) and (12 × 16), where 14 and 12 cor-
espond to the number of milk and cheese samples, respectively,
nd 9 and 16 are the number of variables or chromatographic peaks
hosen in each case.

able 7
etention times corresponding to cheese samples elaborated with ovine, caprine or
ovine pure milk.

Peak number Retention time (min) Milk

1 5.8 Ovine
2 8.5 Rawa

3 8.7 Caprine
4 9.3 Ovine/caprine/bovine
5 15.5 Caprine
6 15.9 Caprine
7 16.5 Ovine
8 16.8 Ovine/caprine
9 17.1 Caprine

10 17.7 Ovine/caprine
11 18.4 Caprine/bovine
12 19.2 Ovine
13 19.5 Ovine
14 20.9 Ovine/caprine
15 21.3 Ovine/caprine
16 22.4 Bovine

a Specific peak for raw milk.
e milk, respectively. (b) Chromatograms of a cheese sample made with 95% caprine
% bovine milk.

3.2.1. Milk samples
A PCA model is built with data matrix X previously centred by

column. The number k of principal components will be obtained by
means of cross-validation with leave one out procedure.

Q and Hotelling’s T2 statistics are used to identify outliers. The Q
statistic indicates how well each sample conforms to the model.
It is a measure of the difference, or residual, between a sample
and its projection into the k principal components (or latent vari-
ables) retained in the model. The sum of normalized squared scores,
known as Hotelling’s T2 statistic, is a measure of the variation of
each sample within the model. That is, the distance of each sam-
ple to the centroid of the hyper-ellipsoid that makes up the space
with the k principal components (or latent variables) and with the
desired confidence level. Confidence limits can be calculated for Q
and T2 at the desired confidence level. Data for which both statis-
tics result higher than the threshold value (usually at 95 or 99% of
confidence) are removed and the model will be redone.

By following this procedure, three principal components are
chosen. With this model, none of the objects was removed since
they did not present Q residual or Hotelling T2 statistics values
higher than 95% threshold. Percentages of variance correspond-

ing to the three principal components are 55.26, 39.44 and 4.67%,
respectively, which together explain 99.37% of the variability of
predictors. Loadings for the nine variables and the two principal
components are shown in Fig. 3a for the first principal component
and Fig. 3b for the second one, respectively.
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Fig. 3. Loadings on the first (a) and second (b) principal co
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ples. Thus, a PC model is built with data matrix Y also centred by
ig. 4. Scores on the plane second vs. first principal components from PCA model
ith milk samples. “b”, “o” and “c” mean bovine, ovine and caprine milk, respec-

ively.

It can be seen that in the first principal component, Fig. 3a, load-
ngs are negative for variables 8 and 9, and positive for variables 4
nd 7. The opposite behaviour is also observed between variables
, 8 and 9 with respect to variables 3, 6 and 7 in the second princi-
al component (see Fig. 3b). Table 6 shows how peaks 8 and 9 are
elated to the presence of bovine milk, whereas peak 4 is related to
he presence of ovine milk, peak 6 to the presence of caprine milk
nd peaks 3 and 7 to the presence of both ovine or caprine milk
n the mixtures, respectively. This explanation has been detailed
or first and second principal components since they are the ones
hich explain the maximum percentage of the variability (94.70%)

ound in predictors.

Fig. 4 shows the projection of the objects (its scores) on the plane

ormed by the first two principal components. Letters ‘b’, ‘o’ and ‘c’
n names of Fig. 4 mean the presence of bovine, ovine or caprine

ilk, respectively, in the mixture. Hence, this Fig. 4 shows a distri-

Fig. 5. Loadings on the first (a) and second (b) principal com
mponents from PCA models built with milk samples.

bution of the objects according to a mixture diagram where pure
samples are placed in the vertices of a triangle. Those objects with
only caprine or caprine and bovine milk have high scores of the sec-
ond component and therefore they are placed on the top of Fig. 4
with big areas for peaks 3, 6 and 7 (related to the presence of caprine
milk in the mixture) and small for peak 4 (related to ovine milk);
it will be also small area from peaks 8 and 9 (bovine milk) due to
the little quantity of bovine milk present in the mixtures. In con-
trast, samples with ovine and bovine milk or ternary mixtures have
high scores of the first component (right side of Fig. 4) but lower
than pure ovine sample (as it is to be expected because they are
mixtures which also have bovine milk). This is in agreement with
the fact that the first principal component has positive loadings for
variables 4 and 7 (both related to the presence of ovine milk in the
mixtures). Also in that side of Fig. 4, but now with higher scores
than pure ovine sample for the second component, they are found
all samples with ovine and caprine milk (second component has
positive loadings for variables 3, 6 and 7, all related to the presence
of caprine milk in samples). Furthermore, pure bovine milk sample
has the highest and the most negative value of score for the first
and second principal components (on the bottom left side of Fig. 4)
where variables 8 and 9, the ones related to the presence of bovine
milk in mixtures, have negative loadings.

From PCA, it can be concluded that chromatographic profiles
gather the information about the kind of milk mixture from each
sample.

3.2.2. Cheese samples
An analogous PCA as the one carried out in previous section

with milk samples is now going to be considered for cheese sam-
column and two principal components (chosen by cross-validation
with leave one out procedure). Once checked the absence of out-
lier data (Q residual or Hotelling T2 statistics at 95% threshold),
the percentages of variance explained by first and second princi-

ponents from PCA models built with cheese samples.
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In order to be able to quantify the percentage of each kind of
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ig. 6. Scores on the plane second vs. first principal components from PCA model
ith cheese samples. “b”, “o” and “c” mean bovine, ovine and caprine milk, respec-

ively.

al components in the model are 77.56 and 14.74%, respectively,
hat is a total of 92.30% of variance.

Loadings for the sixteen variables and the two principal com-
onents are shown in Fig. 5 in a similar way as in milk case. The
rst component marks the opposition between variable 16 (peak
elated to the presence of bovine milk) in contrast to the rest of
he variables. The second component is not related to variable 16.
t marks the opposition between variables 1, 4, 7, 12, 13, and 14

ith positive loadings and related to the presence of ovine milk vs.

ariables 3, 5, 6, 8, 9, 10, 11 and 15 with negative loadings and all
elated to the presence of caprine milk.

Fig. 6 shows the scores on the plane formed by the first two
omponents similarly to Fig. 4. The same nomenclature is also cho-

able 8
rue and calculated by means of PLS and univariate models percentages for ovine, caprine
n the prediction set.

Samples set True ovine
milk (%)

Calculated ovine milk (%) True caprine
milk (%)

Calcul

PLS Univariate
peak 4

PLS

Training

100 97.07 103.13 0 2.27
0 −0.01 −1.28 0 1.34

85 84.93 85.95 0 −1.31
95 86.63 89.72 0 6.38
70 74.42 90.29 0 1.10

0 0.91 −1.28 100 103.95
85 90.71 95.84 15 10.05
90 95.51 104.60 10 3.89

0 −0.44 −1.28 90 87.16
70 74.03 78.52 15 8.47

0 1.31 −1.28 80 70.91
100 102.75 77.71 0 −2.04

0 −0.40 −1.28 0 2.20
0 −1.64 −1.28 100 105.22

90 84.69 90.53 0 6.05
95 91.32 85.99 0 2.22
85 86.74 88.96 15 13.83
90 91.95 77.98 10 9.64

0 0.59 −1.28 85 82.50
0 −0.27 −1.28 95 96.45

90 84.19 85.97 5 9.71

Prediction

90 88.01 90.64 0 −0.91
80 83.37 98.54 0 −4.46
60 64.65 74.23 0 3.93

0 0.85 −1.28 85 79.45
80 77.28 87.57 10 8.41
80 85.07 99.94 20 15.79
85 84.91 83.34 0 3.26
95 87.57 94.31 5 12.66

0 −0.98 −1.28 90 89.83
80 84.10 77.07 10 7.16
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sen: letters ‘b’, ‘o’ and ‘c’ mean the presence of bovine, ovine or
caprine milk in cheese production and the plus sign (+) indicates
that the cheese is prepared with raw milk. The distribution of the
objects in this plane has the same shape as in milk study: a triangle
with pure cheese samples in the vertices and binary mixtures on
its sides. Samples are all very close to the vertices because the kind
of milk which is in mayor proportion is always near 100 (95 or 98%
according to Table 5). With respect to the situation of the rest of the
objects in Fig. 6, the explanation is similar than the one for Fig. 4.
Pure bovine cheese sample has high scores for the first principal
component (positive loading for variable 16, related to the presence
of bovine milk). Regarding the distribution of the objects accord-
ing to the second principal component, it can be said that samples
with ovine milk have high scores (positive loading for variables 1,
4, 7, 12, 13, and 14 related to the presence of ovine milk) whereas
samples with caprine milk have low scores for this second principal
component (negative loading for variables 3, 5, 6, 8, 9, 10, 11 and
15 related to the presence of caprine milk).

Furthermore, as it happened with milk samples, the princi-
pal component analysis shows that the information contained in
the chromatographic profile allows describing the milk mixture
used in the production of each cheese. Comparing both PC models,
less number of components is obtained to describe the samples of
cheese, what indicates the existence of fewer sources of variability.

3.3. Partial least squares analysis (PLS)
milk present in a mixture or in the composition of a cheese, PLS
calibration models are performed with samples prepared and mea-
sured in different days. The summary of all samples is described in
Tables 4 and 5 for milk and cheese respectively. If PLS models are

and bovine milk with 21 milk samples in the training set and the 10 milk samples

ated caprine milk (%) True bovine
milk (%)

Calculated bovine milk (%)

Univariate
peak 6

PLS Univariate
peak 8

Univariate
peak 9

4.58 0 0.83 −2.79 −1.33
4.58 100 98.23 97.44 100.81
4.58 15 17.52 14.12 14.47
4.58 5 11.14 6.61 6.94
4.58 30 23.04 22.67 21.27

100.26 0 −4.14 −2.79 −1.33
4.58 0 0.27 −2.79 −1.33
4.58 0 0.62 −2.79 −1.33

87.29 10 16.10 19.95 12.13
4.58 15 19.29 15.98 17.62

62.01 20 28.43 30.51 30.47
4.58 0 1.03 −2.79 −1.33
4.58 100 98.07 100.16 98.60

122.69 0 −2.83 −2.79 −1.33
4.58 10 6.33 6.50 7.20
4.58 5 5.79 3.51 5.46
4.58 0 −3.39 −2.79 −1.33
4.58 0 −1.15 −2.79 −1.33

79.61 15 13.32 25.72 19.53
99.38 5 2.15 10.76 5.81

4.58 5 4.35 3.41 5.27

4.58 10 13.99 10.95 10.61
4.58 20 19.99 16.87 17.83
4.58 40 31.66 29.08 30.60

72.62 15 20.98 23.64 21.39
4.58 10 14.94 12.84 13.61
4.58 0 −2.48 −2.79 −1.33
4.58 15 10.36 9.29 10.45
4.58 0 −3.43 −2.79 −1.33

100.95 10 7.43 19.80 12.98
4.58 10 8.01 6.64 8.30
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Table 9
Parameters of the PLS calibration models with data matrix Z and K. The first 10
raws correspond to milk samples models, whereas the other three belong to cheese
samples models. In both cases, ovine, caprine and bovine milk percentage are,
respectively, taken as response.

Kind of milk taken as response (%) Explained variance (%) L.V.a RMSECV

X-block Y-block

Milk samples: data matrix Z
Ovine 53.15 92.67 1 12.76

96.04 96.91 2 8.35
97.56 98.63 3 6.22
99.60 99.31 4 4.63

Caprine 38.45 95.62 1 13.43
96.02 96.18 2 8.39
97.40 98.22 3 8.20
99.59 98.89 4 6.57

Bovine 57.31 96.73 1 6.04
95.99 98.28 2 4.59

Cheese samples: data matrix K
Ovine 79.72 43.78 1 44.29

95.19 98.48 2 8.30
96.28 99.61 3 8.58
98.21 99.84 4 6.72

Caprine 66.79 44.71 1 39.36
95.19 98.10 2 8.69
95.98 99.69 3 9.11
97.16 99.90 4 6.99

T
P
t
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ble to suitably predict percentages of each kind of milk present
n samples measured in different days, it will not be necessary to
uild calibration models daily.

.3.1. Milk samples
Data are arranged in a matrix Z with dimensions (31 × 9) where

1 correspond to the number of milk samples and 9 to the num-
er of variables recorded (chromatographic peaks in Table 6). The
ame procedure was followed with cheese samples, arranging their
ata in a matrix K (24 × 16) where 24 correspond to the number of
heese samples and 16 to the number of chromatographic peaks
hosen (Table 7).

To evaluate the capability of prediction of the PLS model, sam-
les from matrix Z are divided into training set and prediction set so
hat the 3 days and the different kinds of milk mixtures are repre-
ented in both sets and approximately a third of the samples are in
rediction set. The training and prediction sets with 21 and 10 sam-
les are shown in Table 8. Three PLS models are performed, data
reviously centred by column, and taking as response the ovine,
ovine or caprine milk percentage in each sample. The number
f latent variables in the PLS regression is determined by cross-
alidation with venetian blinds procedure, reaching the minimum
oot mean square error in cross-validation (RMSECV) with four
atent variables when ovine or caprine milk percentage is used as
esponse and two latent variables when the response is the bovine
ilk percentage (see Table 9). None object is outlier according to
residual and T2 Hotelling statistics. For PLS models, more than

8.28% of the response is explained with four or two latent vari-
bles, respectively, depending on the response in the model. The
MSECV varies from 4.59 to 6.57 in these three calibration models.

Values of true and calculated percentages of ovine, caprine and
ovine milk in the mixtures for calibration samples are shown in
able 8. To determine the trueness, regression lines between per-
entages of milk calculated by PLS vs. true percentages of milk
resent in a mixture have been carried out. It is checked whether
he regression models have slope and intercept statistically equal
o 1 and 0, respectively, and suitable results are got for the three
ases because p-values are greater than 0.05 as it can be seen in
able 10.

The capability of prediction of the method is evaluated with
amples from the external test set. Percentages of ovine, caprine
nd bovine milk obtained for them can also be seen in Table 8. By
omparing the percentages of ovine, caprine and bovine obtained
n calibration and prediction, it can be said that models are stable.

Other figures of merit such as CC� and CC� have been evaluated

o guarantee the quality of PLS models.

In our case, values of CC� for probability of false non-compliance
xed at 0.05, and values of CC� for probabilities of false non-
ompliance and false compliance fixed both at 0.05, have been
btained and they are shown in Table 10. As an example, when

able 10
erformance characteristics calculated for the PLS and univariate calibration models. The fi
o cheese samples models. In both cases, ovine, caprine and bovine milk percentage are, r

Kind of milk taken
as response (%)

Precision (syx) (%) CC�a (%) CC�b (%)

PLS Univariate PLS Univariate PLS

Ovine 3.78 9.24 6.97 16.93 13.77
Caprine 4.40 8.79 7.96 15.76 15.73
Bovine 3.88 5.14 (peak 8) 7.04 9.17 (peak 8) 13.91

3.61 (peak 9) 6.44 (peak 9)

Ovine 2.08 9.60 3.92 18.08 7.72
Caprine 1.52 7.38 2.81 13.57 5.52
Bovine 0.80 0.94 1.47 1.71 2.89

a Probability of false non-compliance fixed at 0.05
b Both probabilities of false non-compliance and false compliance fixed at 0.05.
Bovine 84.07 99.90 1 1.17
94.34 99.95 2 1.05

The chosen models are in bold.
a L.V.: number of latent variables.

ovine milk percentage is taken as response in the suitable PLS
calibration, CC� is 6.97% and CC� 13.97%. By following the same
methodology, similar values are provided by PLS models when they
are the caprine or ovine milk percentages which are, respectively,
taken as response in the calibration model and they can again be
appreciated in Table 10.

All these results have been compared with the ones obtained
through an univariate procedure. For so, the percentages of peak
area from peak 4 (related to ovine milk), 6 (related to caprine milk)
and 8 or 9 (related to bovine milk) are taken. Three regression lines
are built with these percentages vs. the true percentage of ovine,
caprine and bovine milk respectively present in each sample. Calcu-
lated percentages of ovine, caprine and bovine milk are obtained for
all samples, their values can be seen in Table 8. Their correspond-
ing CC� and CC� values are shown in Table 10, as an example CC�
and CC� are equal to 16.93 and 33.43%, respectively, when the per-

centage of ovine milk is determined. These values are much worse
than the PLS ones. Finally, the trueness of the method is checked. It
can be concluded that in general, better results are got by means of
PLS regression models except for the bovine milk when taking into
account information from peak 9.

rst three raws correspond to milk samples models, whereas the other three belong
espectively, taken as response.

Trueness

Intercept (p-value) Slope (p-value)
Univariate PLS Univariate PLS Univariate

33.43 0.38 (0.78) 0.00 (1.00) 0.99 (0.72) 1.00 (0.99)
31.13 0.33 (0.79) 0.00 (0.99) 0.99 (0.65) 0.99 (0.99)
18.11 (peak 8) 0.27 (0.78) 0.00 (0.99) 0.98 (0.57) 0.99 (0.99)
12.71 (peak 9) 0.00 (0.99) 0.99 (0.99)

35.56 0.09 (0.91) 0.00 (0.99) 0.99 (0.88) 1.00 (0.99)
26.69 0.03 (0.95) 0.00 (0.99) 1.02 (0.91) 1.00 (0.99)

3.37 0.01 (0.97) 0.00 (0.99) 0.99 (0.93) 1.00 (0.99)
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Table 11
True and calculated by means of PLS and univariate models percentages for ovine, caprine and bovine milk with 16 cheese samples in the training set and the 8 cheese
samples in the prediction set.

Samples set True ovine
milk (%)

Calculated ovine milk (%) True caprine
milk (%)

Calculated caprine milk (%) True bovine
milk (%)

Calculated bovine milk (%)

PLS Univariate
peak 7

PLS Univariate
peak 9

PLS Univariate
peak 16

Training

0 0.05 0.19 0 −0.04 1.03 100 99.98 100.04
100 101.84 114.72 0 −0.97 1.03 0 0.08 −0.06

0 −4.15 0.19 100 102.82 100.12 0 0.11 −0.06
95 94.09 74.59 0 0.47 1.03 5 5.06 5.50
98 101.19 84.45 2 −0.39 1.03 0 −0.31 −0.06
98 97.56 100.06 2 2.85 1.03 0 −0.14 −0.06

0 −0.80 0.19 95 94.48 80.70 5 4.91 4.41
0 1.24 0.19 98 98.63 115.60 2 3.22 2.73
0 0.05 0.19 0 −0.04 1.03 100 99.98 100.04

100 102.09 112.58 0 −0.73 1.03 0 0.04 −0.06
0 0.33 0.19 100 99.16 100.95 0 −0.08 −0.06

98 96.72 112.99 0 1.02 1.03 2 3.04 2.94
98 95.05 99.03 0 2.05 1.03 2 3.01 3.59
95 94.74 90.53 5 3.75 1.03 0 −0.67 −0.06
98 97.00 89.89 2 3.44 1.03 0 −0.01 −0.06

0 4.02 0.19 95 92.51 90.46 5 2.79 2.22

Prediction

98 96.08 122.42 0 −0.65 1.03 2 4.98 5.09
98 97.99 85.94 0 −2.14 1.03 2 5.19 5.08
95 101.72 90.83 5 −2.77 1.03 0 −0.04 −0.06

0 9.51 0.19 98 84.84 88.67 2 2.39 2.85
95 95.89 81.55 0 0.97 1.03 5 2.91 3.39
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98 100.54 86.64 2
0 16.24 0.19 98
0 6.51 0.19 98

.3.2. Cheese samples
The way to tackle the problem with cheese samples is analogous

o the one described for milk samples. Firstly, 16 samples from
atrix K are chosen to take part in the training set whereas the

ther 8 will be used to evaluate the capability of prediction of the
odel, so that, different days and kinds of milk mixtures are in both

ets. The three PLS models (taking as response the ovine, bovine
r caprine milk percentage in each cheese) are again performed
ver the training set from experimental matrix K data previously
entred by column. In PLS regression four latent variables, when
vine or caprine milk percentage is the response or two when it is
he percentage of bovine milk, are chosen by cross-validation with
eave one out procedure in the three cases. None of the objects is
utlier according to values of Q residual and T2 Hotelling statistics
t 95% threshold. For the three PLS models, more than 99.84% of
he response is explained and the RMSECV values vary from 1.05
o 6.72. Parameters of PLS calibration models, just as the values of
ome performance characteristics calculated for them can be seen
n Tables 9 and 10. The values of true and calculated percentages of
vine, caprine and bovine milk in cheeses for calibration and test
amples are respectively shown in Table 11.

As it was to be expected, regressions built with percentages cal-
ulated by PLS models vs. true percentages have, in all cases, slope
nd intercept statistically equal to 1 and 0, being able to conclude
hat the method is trueness when calculated by PLS model vs. true

ilk percentage regressions are performed (see columns 8 and 10
rom Table 10).

Percentages of peak area from peak 7 (related to ovine milk),
(related to caprine milk) and 16 (related to bovine milk) are

aken with the aim of comparing these results with the univari-
te ones. Table 11 shows the calculated percentages of three kinds
f milk obtained for calibration and test samples. Values of the cor-

esponding performance characteristics can be seen in Table 10 by
oncluding the same as for milk samples: much better results are
ot by means of PLS regression models than the univariate ones.

By comparing values of CC� and CC� calculated for PLS calibra-
ion models with cheese samples with the ones obtained for models
0.26 1.03 0 0.02 −0.06
80.32 90.55 2 0.07 0.94
95.30 64.32 2 1.36 1.02

with milk samples, it can be said that, better results are attaint in
models with cheese samples. CC� values obtained are 3.92, 2.81
and 1.47% and those of CC� 7.72, 5.52 and 2.89% for ovine, caprine
and bovine milk percentage, respectively.

The adsorption of peptides is a well know phenomenon [44]
and reduces the analyte concentration, increasing the risk of false
negative, in other words, increasing CC�. The adsorption is a
concentration dependent surface phenomenon, and the lower con-
centrations are studied the higher peptides losses are observed [45].
This effect is important in pharmaceutical and proteomic research,
but the concentration of peptides associated to a, say, 5% of milk in
cheese is several orders of magnitude greater than the one reported
in these references, so this effect is negligible in the analyses car-
ried out in the present work. In the quantification stage, standard
samples with known quantities of each kind of milk are used. That
means that the PLS calibration models gather the possible loss (sig-
nal reduction) that could happen. Tables 8 and 11 show that the
differences, in relative error for both milk and cheese samples, are
very small in training and prediction samples.

It must be added, as final note, that PLS calibration models have
the advantage of being able to identify samples which are different
from the ones used in training set, avoiding, therefore, a wrong use
of the PLS model when predicting the percentage of each kind of
milk present in the analysed sample. When these models are used
in a routine way, the non-similar samples are separately studied so
that, later, samples with the ‘new’ structure are incorporated to the
training set. In this way, the model can be actualized or extended
including temporary milk changes or new industrial practices for
cheese making.
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